
HaZardModding Coop Mod for MOHAA Scripting
written by chrissstrahl on 2019.04.16

last update on 2019.04.16

PLEASE NOTE
This document is directed towards scripters that want to use the HZM Coop Mod and and know how to
handle level scripts. This is not directed towards beginners.
The HZM Coop Mod for AA and BT was developed using MOH-Breaktrough so it run on BT.

FOREWORD
The HaZardModding Coop Mod might not be big in filesize, non the less the scripts of the mod are more
complex than a regular map. This document was created to provide a overview and provide some help.

Imagine the HZM Coop Mod as a own gametype inside the actual gametype, handling player spawn
iventory and so forth.

The HZM Coop Mod is designed to handle player actions/events correctly in single and multiplayer, this
means if you are using a coop script function it will work in both sp/mp (with a few exceptions).

INDEX
VARIABLES
SPAWNLOCATIONS
FUNCTIONS
I MPLEMENTATION
REPLACEMENT
GAMETYPE S
PLAYERS
END

VARIABLES
The HZM Coop Mod uses a few global variables that stay the same and are required for the mod to operate
as expected. Other variables used are usually limited to the current level. Some Variables can be adjusted
(green), but most are auto-managed by the coop mod and should not be changed.
NAME TYPE DESCRIPTION
level.coop_svmaxclients int Holds the max player/clients slots (speed benefit)

level.coop_mapname string Holds the map name (speed benefit)

level.coop_playerReady bool 0 on default 1 if any player is ready and has joined

level.coop_musicCommandVol int Holds current volume for the music

level.coop_musicCommand string Holds current music command that is send to players

level.coop_inJeep int Used to check if player should be in jeep or not

level.coop_playerGlue bool Used to check if player should be glued

level.coop_playerHide bool Used to check if player should be hidden

level.coop_player entity Holds the player that the team ai is following

level.coop_playerTank entity Holds the player that is currently driving the tank

level.enemyhealthscalar float Health scaler - used in global/spawner.scr

level.coop_noWeapon bool Specifies if players should have no weapons

level.coop_threatbias float Specifies how much players are a threat to enemy AI

level.coop_aaMap bool Makes Coop & global scripts handle the map like in AA

level.coop_health int Sets players health (MP only)

level.coopMedicHealth int Sets health for Medic Friendly AI

level.coop_prespawn bool Used in replace.scr::waitTillPrespawn

level.script string Stores current script filename, used in global scripts

SPAWNLOCATIONS
The HZM Coop Mod holds all spawnlocations in a single file, this is convinient for us developers.
How ever, we recommend that you put the spawnlocations at the very top of your level script its main
function, right before/above anything else. This is to make sure that your development does not get affected
with changes occuring in the HZM Coop Mod and vice versa.

Each player has a own spawn point variable, which should contain the location the player can saftly spawn
or respawn. To spawn all players at the same location, you need to specify only the spawnlocation with the
number 1, the same applies for the facing angle variable. How ever, we do NOT recommend spawning all
players at the same location, so use it only during testing.

We recommend that you update the spawnlocations whith the advancement of the mission progress, so that
the players spawn close to where the other players are in the mission.

In the Example code you can see how you can implement the spawnlocations directly in your level script.
If you want to change/update the spawnlocations during the mission, you need to overwrite the value of each
variable, by a script function, like shown in the example code.

1 main:{

2 level.flags["coop_spawn1origin"] = (-2682 -3235 120) //player 1 spawn

3 level.flags["coop_spawn2origin"] = (-2642 -3235 120) //player 2 spawn

4 level.flags["coop_spawn3origin"] = (-2602 -3235 120) //player 3 spawn

5 level.flags["coop_spawn4origin"] = (-2722 -3235 120) //player 4 spawn

5 level.flags["coop_spawn5origin"] = (-2762 -3235 120) //player 5 spawn

7 level.flags["coop_spawn6origin"] = (-2802 -3235 120) //player 6 spawn

8 level.flags["coop_spawn7origin"] = (-2842 -3235 120) //player 7 spawn

9 level.flags["coop_spawn8origin"] = (-2882 -3235 120) //player 8 spawn

10 level.flags["coop_spawn1angles"] = (0 1 0) //player 1 (applies to every other that is not set)

11 ...//this represents other code, variables above need to be first inizialised before all else code

12 }end //end main

FUNCTIONS
The HZM Coop Mod has many new functions that handle things in the background. Some of these functions
are meant to replace some commands who are used in singleplayer, and some are just specific for coop.
The Tables below hold a overview of the functions in the coop files.

Types and recommended execution of the used functions

Short Description Code

s for Singleplayer only -

c for Coop (works too in sp) -

r Replacment, used to replace other
code. Keeping the usual parameters

-

et Needs to be executed by a entity $ai exec coop_mod/replace.scr::tmstop

ew Entity and waitexec $ai waitexec coop_mod/replace.scr::cansee 120 1200

we Needs to be executed with waitexec waitexec coop_mod/replace.scr::waittilldrive 0.25 0.1

ex Should be executed normally exec coop_mod/replace.scr::forceTeam $player[4]

coop_mod/main.scr This file contains the coop mod core functions

Function (with parameters) Types Description

forceTeam local.player c,ex Forces the given player in the allied team

resetSpawn local.player c,ex Deletes last dynamic respawn location for player

printInfo local.player local.message
local.bold

c,ex Prints a message to player hud, prevents next
message to show before 3 sec after the last message

playerFace local.face r,et Faces executing player to the given direction
Replaces: $player face (0 69 0)

playerTakeAll local.player r,ex Takes weapons and Items from player
Replaces: $player takeall

playerPlaceAtSpawn local.i c,ex Places a player at the given spawnpoint number

playerMakeSolidAsap local.i c,ex Makes given player with the number solid as soon as
it is saftely possible, so the player will not get
stuck in other player, medics, teammates or tanks

itemGetAll c,et Gives all registered Items to executing player

friendlyPlayerOrigin r,ex Returns the origin of teh player, the Team AI is
following. Replacs (in context): $player.origin

destination r,et Replacement command for destination.
Replaces: $someAI destination $player

tether r,et Replacement command for tether
Replaces: $someAI tether $player

isPlayerActive local.player c,we Checks if a player is active (alive,not a spectator)

getPlayerId local.player c,we Returns the ID of given player

getActiveWeapon local.player c,we Returns the current weapon of given player

isPrimaryWeaponActive local.player c,we Check if primary weapon of given player is active

isWeaponModel local.model c,we Checks if given model is in weapons folder

isPrimaryWeapon local.weapon c,we Checks if the given Model is a primary Weapon

playerForcePrimary local.player local.weapon c,ex Forces given Primary Weapon on given Player

playerForceSecondary local.player
local.weapon

c,ex Forces given Secondary Weapon on given Player

coop_mod/replace.scr This file is primarly for replacing code

Function (with parameters) Type Description

waitTillPrespawn r,we Replaces: level waittill prespawn

waitForPlayer r,we Replaces: level waittill spawn, waits until players
are on the server and ready. (in a desirable fashion)

isPlayerArray local.entity c,we Checks if given entity is $player and a array

player_anyCanBeSeen local.ent local.fov
local.range

r,we Replaces: $player cansee $someAi 120 1200

player_numActive c,we Returns number of active players

player_random c,we Returns a random valid player

player_anyValid c,we Returns any valid player (sorted by player number)

player_anyPreferValid c,we Returns any player (sorted by player number)

player_closestTo local.object local.origin c,we Returns closest player to a Entity or origin

player_origin c,we This function needs a update, don‘t use it

waittill_spawn r,we Waits until any player is present on the server.
Replaces: level waittill spawn (in a simple fashion)

stopwatch local.time r,ex Replaces: $player stopwatch

viewangles local.vecAngles r,ex Replaces: $player.viewangles =

tmstop r,ex Replaces: $player stufftext "tmstop"

tmstartloop local.file r,ex Replaces: $player stufftext "tmstartloop ..."

tmstart local.file r,ex Replaces: $player stufftext "tmstart ..."

tmvolume local.vol r,ex Replaces: $player stufftext "tmvolume ..."

lookat r,et Replaces: $ai lookat $player (selects closest player)

eyeslookat r,et Replaces: $ai eyeslookat $player (closest player)

turnto r,et Replaces: $ai turnto $player (selects closest player)

istouching local.touchMeBaby r,we Replaces: $player istouching $entity (checks all
players)

getToucher local.touchMeBaby c,we Returns: player touching given entity

aimat r,et Replaces: $ai aimat $player (selects closest once)

set_hasdisguise local.disguise r,ex Replaces: $player.has_disguise

ammo local.type local.amount local.sound r,ex Replaces: $player ammo

sighttrace local.offset local.vec local.pass
local.min local.max

r,we Replaces: $player sighttrace

item local.item local.use r,ex Replaces: $player item

take local.item r,ex Replaces: $player take

takeAll r,ex Replaces: $player takeall

cansee local.fov local.range r,ew Replaces: $ai cansee $player ...

canseenoents local.fov local.range r,ew Replaces: $ai canseenoents $player ...

playerCansee local.ent local.fov local.range r,we Replaces: $player cansee $ai

canseeGetClosest local.fov local.range c,ew Returns: Closest player for executing entity

threatbias local.val r,ex Replace: $player threadbias

killplayer c,ex Kills all players

glue local.entity local.angle r,ex Replaces: $player glue

unglue local.entity r,ex Replaces: $player unglue

physics_on r,ex Replaces: $player physics_on

physics_off r,ex Replaces: $player physics_off

show r,ex Replaces: $player show

hide r,ex Replaces: $player hide

forcelegsstate local.state: r,ex Replaces: $player forcelegstate

withinDistanceOf local.ent local.distance c,we Returns true if a player is within given distance of
given entity

withinDistance local.origin local.distance c,we Returns true if a player is within given distance of
given origin

playsound local.sound r,ex Replaces: $player playsound "..."

loopsound local.sound r,ex Replaces: $player loopsound "..."

stoploopsound local.sound r,ex Replaces: $player stoploopsound

runtoClosest c,ex Makes executing ai run to closest player

origin local.ent c,we Returns: Origin of closest player to given entity

holster r,ex Replaces: $ai holster (fixes issues)

unholster r,ex Replaces: $ai unholster (fixes issues)

spawnclip local.origin local.mins local.maxs
local.targetname local.scale local.angle
local.message local.requiredentity
local.range

c,ex Spawns a invisible wall/clip, so players/ai can not
pass. The clip removes it self as soon as the given
required-entity is within given range.
A message is printed each time the clip is touched.

waittilldrive local.delay local.wait c,we Waits until vehicle stops, optional self specifified
delay time. Needs to be called with waitexec.

waittillRange local.other local.range c,we Waits until self is in given range of given other.

waittillRangeVector local.vector local.range c,we Waits until self is in given range of given vector.

originOffset local.offset c,ex Used to move objects relative to their current origin

solid local.awaypos c,et Makes executing entity solid and moves all players to
the given vector, which would get stuck in the object

skip local.useOnly c,ex Checks if players vote(click) to skip current
cinematic/intro.

teleportToOnTouch local.ent local.vec
local.offset

c,et Teleport player touching executing entity to given
entity or given vector with optional given offset

inpvs local.ent r,we Replaces: $player inpvs $actor

onTouchKill c,ex Kills player touching the executing Trigger entity

IMPLEMENTATION
The HZM Coop Mod needs to be implemented into each main level script. For each level there is only one
main level script, it can be easily idendified, since it has the exact same name as the bsp-file of the level.
For the implementation of the HZM Coop Mod only a few lines of code are nessesary, at the very start of the
main function…

The main function of the HZM Coop Mod needs to be executed after the main variables are set and right
before any kind of wait command or delaying function. If you need to specify spawnlocations in your script,
make sure to put them before thread coop_mod/main.scr::main, because the HZM Coop Mod needs
them to be set before the level starts.

1 main:{
2 level.script = "maps/e1l1.scr" //set current mapscript (for global script stuff)
3 level.coopPrevMap = "e1l1" //set previouse map (for mom coop voteing)
4 level.coopNextMap = "e1l3" //set next map (for mom coop voteing)
5 thread coop_mod/main.scr::main //start coop mod before any wait command, required
5
7 … //this represents non coop code
8
9 waitthread coop_mod/replace.scr::waitForPlayer //replacing:level waittill spawn
10
11 … //this represents non coop code
12 }end //end main

COMPAITBILITY
Many script commands in the level scripts are desinged to handle one player, because the game its
Singleplayer nature. This makes many level scripts not work right during multiplayer, this gets the Missions
stuck.
The HZM Coop Mod was designed to compensate and to make these levels compatible to multiplayer.
We tried to keep it as simple and efficent as possible, so that other scripters can use these features.

Making a level script Coop compatible is in most cases a simple search and replace procedure. How ever,
some complex mission do still need advanced modifications to their level scripts.

In this Document we are only focusing on the simple search and replace procedure. How ever, if you need
need our help with your project or need some more insights on the HZM Coop Mod scripts, then please join
us on discord (see link at the very bottom).

REPLACEMENT
Replacing Singleplayer functions with Coop Mod replacement functions is done by just replacing the
command call with a function call to the correct function in coop_mod/replace.scr, keeping all parameters as
they are or removing them entierly.

This is how the original code looks:
1 self.turnto $player

This is how it would be done for coop, remember that almost all coop commands work also in singleplayer:
1 self exec coop_mod/replace.scr::turnto //chrissstrahl - coop compatible

The difference between these two lines of code is that the entity reference $player does not work in
multiplayer as soon as there is more than one player on the server. The HZM Coop Mod replacement
function handles this, by making self turn towards the closest player. The parameter $player is then no
longer needed and therefor removed from the script.

Similar kinds of handling is done insdide almost all functions of the HZM Coop Mod replace.scr script! It is
recommended that you configure your Codeeditor to highlight the keywords, so that you can find them
quickly and replace/remove them.
Keyword Description

$player • As previously mentioned the entity $player will turn into a Array and any code
using $player will stop working. This is because it expects a single entity, not a
Array of entities.

• You will need to lookup and use the corrospinding replacement function instead.
• Sometimes you need to replace the $player entity. You can get the closest player

or use $world if you just want to open a door.

lock • You need to make sure that doors do not lock in/out other players, so you might
need to disable later occurences of lock in the script during multiplayer.

GAMETYPES
There are several different gametypes, each gametype is defined by a number. Sometimes you need to have
different code for the same event in the script. Use the Level-Varaiable level.gametype to retrive the current
gametype. By using if-else you can make the code to be execute only in the gametype you desire, the
Singleplayer is represented by 0, while Multiplayer starts with 1 for Deathmatch and continues from there.

1 someFunction:{

2 if(level.gametype == 0){ //do this only in singleplayer

3 $ai turnto $player

4 }

5 else{ //do this if NOT in singleplayer

5 $ai turnto $otherAi

7 }

8 }end

This code example above could also be used to lock a door after a event/sequence, but only in singleplayer,
so it does not lock out/in players in Coop.

PLAYERS
The Mission scripts deal with a single player, that can eigther be dead (this usually also ends the mission) or
alive and is stored in a static entity variable ($player or $player[1]).

This is much more complex in Multiplayer:
- If any player dies the mission should not fail
- From 0 to 8 players can be active and alive at the same time
- You might need to halt the mission if no player is on the server or active (this is especially important if
dedicated server support is desired).
- The players can be at 8 different locations at the same time, triggering events
- The player that is closest or is using a specific object needs to be idendified and handled

In the HZM Coop Mod players can have these states:
- alive/dead (this is determined by the health of a player, 0 is dead)
- spectator/no-spectator (this is determined by the team of the player)
- active/inactive (this is managed by the HZM Coop Mod - alive, no-spectator and spawned with a weapon)
- As soon as there is more than one player on the server, the entity $player becomes a array, and all players
are stored in it, starting with $player[1] and ending with $player[8]

Sometimes you need to handle all players at once, this seams complicated at first, but it is really simple, as
you will gather from the example code, if you just take a moment to read it carefully.

In this example code the currently active weapon of every active players is printed into the console.
This code also works in singleplayer.

1 someFunction:{

2 for(local.i = 1;local.i <= $player.size;local.i++){ //handle all players

3 local.player = $player[local.i] //get a single player from array

4 if(local.player != NULL && local.player.health > 0){ //check if player exists and is alive

5 if(level.gametype != 0){ //do this only in multi

5 if(local.player.dmteam == "spectator" || local.player.flags["coop_isActive"] != 1){

7 continue; //skip this player if spec or not active

8 }

9 //get name of active weapon and print to console

10 println(exec coop_mod/main.scr::getActiveWeapon local.player)

11 }

12 }

13 }

14 }end

In this example code all players are moved to their spawnlocation. This can be used to move all players to a
new area. We want all players to be moved, regardless if they are dead, inactive or in spectator.
This code also works in singleplayer.

1 someFunction:{

2 for(local.i = 1;local.i <= $player.size;local.i++){ //handle all players

3 local.player = $player[local.i] //get a single player from array

4 if(local.player != NULL){ //check if player exists

5 //moves player with given number to his spawnpoint

5 thread playerPlaceAtSpawn local.i

7 }

8 }

9 }end

END
Thank you for reading, I hope I could give you some useful insight.
If you have any feedback, feel free to contact me.

Contact HaZardModding Group:
On Discord: https://discord.gg/vW7vskc (recommended)
On ModDB: https://www.moddb.com/messages/compose?to=Chrissstrahl

https://www.moddb.com/messages/compose?to=Chrissstrahl
https://discord.gg/vW7vskc

